Security News
Node.js EOL Versions CVE Dubbed the "Worst CVE of the Year" by Security Experts
Critics call the Node.js EOL CVE a misuse of the system, sparking debate over CVE standards and the growing noise in vulnerability databases.
jsonld-streaming-parser
Advanced tools
A fast and lightweight streaming and 100% spec-compliant JSON-LD 1.1 parser, with RDFJS representations of RDF terms, quads and triples.
The streaming nature allows triples to be emitted as soon as possible, and documents larger than memory to be parsed.
Make sure to enable the streamingProfile
flag when parsing a JSON-LD document with a streaming profile
to exploit the streaming capabilities of this parser, as this is disabled by default.
$ npm install jsonld-streaming-parser
or
$ yarn add jsonld-streaming-parser
This package also works out-of-the-box in browsers via tools such as webpack and browserify.
import {JsonLdParser} from "jsonld-streaming-parser";
or
const JsonLdParser = require("jsonld-streaming-parser").JsonLdParser;
JsonLdParser
is a Node Transform stream
that takes in chunks of JSON-LD data,
and outputs RDFJS-compliant quads.
It can be used to pipe
streams to,
or you can write strings into the parser directly.
const myParser = new JsonLdParser();
fs.createReadStream('myfile.jsonld')
.pipe(myParser)
.on('data', console.log)
.on('error', console.error)
.on('end', () => console.log('All triples were parsed!'));
const myParser = new JsonLdParser();
myParser
.on('data', console.log)
.on('error', console.error)
.on('end', () => console.log('All triples were parsed!'));
myParser.write('{');
myParser.write(`"@context": "https://schema.org/",`);
myParser.write(`"@type": "Recipe",`);
myParser.write(`"name": "Grandma's Holiday Apple Pie",`);
myParser.write(`"aggregateRating": {`);
myParser.write(`"@type": "AggregateRating",`);
myParser.write(`"ratingValue": "4"`);
myParser.write(`}}`);
myParser.end();
This parser implements the RDFJS Sink interface,
which makes it possible to alternatively parse streams using the import
method.
const myParser = new JsonLdParser();
const myTextStream = fs.createReadStream('myfile.jsonld');
myParser.import(myTextStream)
.on('data', console.log)
.on('error', console.error)
.on('end', () => console.log('All triples were parsed!'));
Using a context
event listener,
you can collect all detected contexts.
const myParser = new JsonLdParser();
const myTextStream = fs.createReadStream('myfile.jsonld');
myParser.import(myTextStream)
.on('context', console.log)
.on('data', console.error)
.on('error', console.error)
.on('end', () => console.log('All triples were parsed!'));
Usually, JSON-LD is published via the application/ld+json
media type.
However, when a JSON-LD context is attached via a link header,
then it can also be published via application/json
and +json
extension types.
This library exposes the JsonLdParser.fromHttpResponse
function to abstract these cases,
so that you can call it for any HTTP response,
and it will return an appropriate parser
which may or may not contain a custom header-defined context:
const myParser = JsonLdParser.fromHttpResponse(
'http://example.org/my-file.json', // For example: response.url
'application/json', // For example: headers.get('content-type')
new Headers({ 'Link': '<my-context.jsonld>; rel=\"http://www.w3.org/ns/json-ld#context\"' }), // Optional: WHATWG Headers
{}, // Optional: Any options you want to pass to the parser
);
// Parse anything with myParser like usual
const quads = myParser.import(response.body);
The Headers
object must implement the Headers interface from the WHATWG Fetch API.
This function will automatically detect the http://www.w3.org/ns/json-ld#streaming
profile and set the streamingProfile
flag.
Optionally, the following parameters can be set in the JsonLdParser
constructor:
dataFactory
: A custom RDFJS DataFactory to construct terms and triples. (Default: require('@rdfjs/data-model')
)context
: An optional root context to use while parsing. This can by anything that is accepted by jsonld-context-parser, such as a URL, object or array. (Default: {}
)baseIRI
: An initial default base IRI. (Default: ''
)streamingProfile
: If this parser can assume that parsed documents follow the streaming JSON-LD profile. If true, and a non-streaming document is detected, an error may be thrown. If false, non-streaming documents will be handled by preemptively buffering entries, which will lose many of the streaming benefits of this parser. (Default: true
)documentLoader
A custom loader for fetching remote contexts. This can be set to anything that implements IDocumentLoader
(Default: FetchDocumentLoader
)ignoreMissingContextLinkHeader
: If the lack of JSON-LD context link headers on raw JSON documents should NOT result in an error. If true, raw JSON documents can be considered first-class JSON-LD documents. (Default: false
)produceGeneralizedRdf
: If blank node predicates should be allowed, they will be ignored otherwise. (Default: false
)processingMode
: The maximum JSON-LD version that should be processable by this parser. (Default: 1.0
)strictValues
: By default, JSON-LD requires that all properties (or @id's) that are not URIs, are unknown keywords, and do not occur in the context should be silently dropped. When setting this value to true, an error will be thrown when such properties occur. This also applies to invalid values such as language tags. This is useful for debugging JSON-LD documents. (Default: false
)allowSubjectList
: If RDF lists can appear in the subject position. (Default: false
)validateValueIndexes
: If @index inside array nodes should be validated. I.e., nodes inside the same array with the same @id, should have equal @index values. This is not applicable to this parser as we don't do explicit flattening, but it is required to be spec-compliant. (Default: false
)defaultGraph
: The default graph for constructing quads. (Default: defaultGraph()
)rdfDirection
: The mode under which @direction
should be handled. If undefined, @direction
is ignored. Alternatively, it can be set to either 'i18n-datatype'
or 'compound-literal'
(Default: undefined
)normalizeLanguageTags
: Whether or not language tags should be normalized to lowercase. (Default: false
for JSON-LD 1.1 (and higher), true
for JSON-LD 1.0)streamingProfileAllowOutOfOrderPlainType
: When the streaming profile flag is enabled, @type
entries MUST come before other properties since they may defined a type-scoped context. However, when this flag is enabled, @type
entries that do NOT define a type-scoped context may appear anywhere just like a regular property.. (Default: false
)skipContextValidation
: If JSON-LD context validation should be skipped. This is useful when parsing large contexts that are known to be valid. (Default: false
)new JsonLdParser({
dataFactory: require('@rdfjs/data-model'),
context: 'https://schema.org/',
baseIRI: 'http://example.org/',
streamingProfile: true,
documentLoader: new FetchDocumentLoader(),
ignoreMissingContextLinkHeader: false,
produceGeneralizedRdf: false,
processingMode: '1.0',
errorOnInvalidIris: false,
allowSubjectList: false,
validateValueIndexes: false,
defaultGraph: namedNode('http://example.org/graph'),
rdfDirection: 'i18n-datatype',
normalizeLanguageTags: true,
});
This parser does not follow the recommended procedure for transforming JSON-LD to RDF, because this does not allow stream-based handling of JSON. Instead, this tool introduces an alternative streaming algorithm that achieves spec-compliant JSON-LD parsing.
This parser builds on top of the jsonparse library, which is a sax-based streaming JSON parser. With this, several in-memory stacks are maintained. These stacks are needed to accumulate the required information to emit triples/quads. These stacks are deleted from the moment they are not needed anymore, to limit memory usage.
The algorithm makes a couple of (soft) assumptions regarding the structure of the JSON-LD document, which is true for most typical JSON-LD documents.
@context
, it is the first entry of an object.@id
, it comes right after @context
, or is the first entry of an object.If these assumptions are met, (almost) each object entry corresponds to a triple/quad that can be emitted. For example, the following document allows a triple to be emitted after each object entry (except for first two lines):
{
"@context": "http://schema.org/",
"@id": "http://example.org/",
"@type": "Person", // --> <http://example.org/> a schema:Person.
"name": "Jane Doe", // --> <http://example.org/> schema:name "Jane Doe".
"jobTitle": "Professor", // --> <http://example.org/> schema:jobTitle "Professor".
"telephone": "(425) 123-4567", // --> <http://example.org/> schema:telephone "(425) 123-4567".
"url": "http://www.janedoe.com" // --> <http://example.org/> schema:url <http://www.janedoe.com>.
}
If not all of these assumptions are met, entries of an object are buffered until enough information becomes available, or if the object is closed.
For example, if no @id
was present, values will be buffered until an @id
is read, or if the object closed.
For example:
{
"@context": "http://schema.org/",
"@type": "Person",
"name": "Jane Doe",
"jobTitle": "Professor",
"@id": "http://example.org/", // --> <http://example.org/> a schema:Person.
// --> <http://example.org/> schema:name "Jane Doe".
// --> <http://example.org/> schema:jobTitle "Professor".
"telephone": "(425) 123-4567", // --> <http://example.org/> schema:telephone "(425) 123-4567".
"url": "http://www.janedoe.com" // --> <http://example.org/> schema:url <http://www.janedoe.com>.
}
As such, JSON-LD documents that meet these requirements will be parsed very efficiently. Other documents will still be parsed correctly as well, with a slightly lower efficiency.
This parser adheres to both the JSON-LD 1.1 specification and the JSON-LD 1.1 Streaming specification.
By default, this parser assumes that JSON-LD document are not in the streaming document form. This means that the parser may buffer large parts of the document before quads are produced, to make sure that the document is interpreted correctly.
Since this buffering neglects the streaming benefits of this parser,
the streamingProfile
flag should be enabled when a streaming JSON-LD document
is being parsed.
If non-streaming JSON-LD documents are encountered when the streamingProfile
flag is enabled,
an error may be thrown.
This parser implements the following JSON-LD specifications:
The following table shows some simple performance comparisons between JSON-LD Streaming Parser and jsonld.js.
These basic experiments show that even though streaming parsers are typically significantly slower than regular parsers, JSON-LD Streaming Parser still achieves similar performance as jsonld.js for most typical JSON-LD files. However, for expanded JSON-LD documents, JSON-LD Streaming Parser is around 3~4 times slower.
File | JSON-LD Streaming Parser | jsonld.js |
---|---|---|
toRdf-manifest.jsonld (999 triples) | 683.964ms (38MB) | 708.975ms (40MB) |
sparql-init.json (69 triples) | 931.698ms (40MB) | 1088.607ms (47MB) |
person.json (5 triples) | 309.419ms (30MB) | 313.138ms (41MB) |
dbpedia-10000-expanded.json (10,000 triples) | 785.557ms (70MB) | 202.363ms (62MB) |
Tested files:
toRdf-manifest.jsonld
: The JSON-LD toRdf test manifest. A typical JSON-LD file with a single context.sparql-init.json
: A Comunica configuration file. A JSON-LD file with a large number of complex, nested, and remote contexts.person.jsonld
: A very small JSON-LD example from the JSON-LD playground.dbpedia-10000-expanded.json
First 10000 triples of DBpedia in expanded JSON-LD.This software is written by Ruben Taelman.
This code is released under the MIT license.
FAQs
A fast and lightweight streaming JSON-LD parser
The npm package jsonld-streaming-parser receives a total of 23,868 weekly downloads. As such, jsonld-streaming-parser popularity was classified as popular.
We found that jsonld-streaming-parser demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Critics call the Node.js EOL CVE a misuse of the system, sparking debate over CVE standards and the growing noise in vulnerability databases.
Security News
cURL and Go security teams are publicly rejecting CVSS as flawed for assessing vulnerabilities and are calling for more accurate, context-aware approaches.
Security News
Bun 1.2 enhances its JavaScript runtime with 90% Node.js compatibility, built-in S3 and Postgres support, HTML Imports, and faster, cloud-first performance.